Household Water Savings and Response to Dynamic Incentives Under Nonlinear Pricing

Li Li^a Marc Jeuland^b

^aFaculty of Economics and Management, East China Normal University ^bSanford School of Public Policy and Duke Global Health Institute, Duke University

October 27, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation

- Nonlinear price schedules are widely used in economic policies, such as income tax, health insurance, and electricity, water, and phone usage.
- E.g., p(x): marginal price of x equals
 - Tier-1 rate: p1 for $x \le k$,
 - Tier-2 rate: p2 for x > k,
 - ▶ where *k* refers to the tier-2 threshold of the budget set.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

Nonlinear price schedule

- Q: To which price do consumers respond?
 - Marginal price according to standard economic theory
 - Expected marginal price due to uncertainty about *x* (Saez, 1999; Borenstein, 2009)
 - Average price due to complexity of p(x) (de Bartolome, 1995; Liebman and Zeckhauser, 2004; Feldman and Katuščák, 2010; Ito, 2014)

Motivation

- The analysis of demand in the presence of a nonlinear price schedule is typically static.
 - As consumption information is usually only available over a single budget period.
 - E.g., the budget for consumption is renewed monthly on the billing date.

▲□▶▲□▶▲□▶▲□▶ ▲□▲ ののの

Motivation

- Q: Do consumers respond to <u>dynamic incentives</u> created by nonlinear prices within a single budget period?
 - Evidence limited to health insurance and no consensus (Aron-Dine et al., 2015; Einav et al., 2015; Dalton et al., 2020)
 - Two approaches
 - 1. Using within-budget-period consumption information
 - 2. Using dynamic modeling
- Our study takes the 1st approach to investigate an unconventional Increasing Block Tariff (IBT).

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Research design

 We exploit a natural experiment arising from <u>a water pricing</u> reform beginning in January 2015 in Hangzhou, China, and employ a <u>difference-in-differences</u> (DID) method for estimation.

Hangzhou

- Capital city of Zhejiang Province in southeast China
- Climate: humid subtropical, four seasons
- Total area: 16,596 km²
- Population in 2014: 2.2 million in five urban districts
- GDP ranking among large and medium-sized cities in 2014: 10th
- Disposable income per capita in 2014: 44,632 yuan (~US\$ 6,796)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Water pricing reform in Hangzhou on Jan 1, 2015

The reform involved a transition from

- A flat rate
 - ► For all households; low; unchanged for ten years

to

- ► <u>A three-tier IBT</u> for households whose meters were directly administered by the water utility
 - IBT households bill.sample
 - Meters are read every two months (odd or even).
 - The budget of water consumption is reset annually (Nov or Dec).
 - ▶ 570 thousand (58%) in 2015
- ► <u>A new flat rate</u> (~IBT tier-1 rate) for households whose meters were administered by the community
 - Non-IBT households bill.sample
 - Meters are read every month by the community administrative office.
 - ▶ 420 thousand (42%) in 2015

Water tariffs in Hangzhou

by accumulative annual water consumption level

Unique features of the reform in Hangzhou

- The reform comes close to an ideal experiment for whether households responding to dynamic incentives.
 - 1. The budget of the IBT is renewed <u>annually</u>, while the billing cycle is bimonthly.
 - High users face variation in expected future price over time.
 - 2. The tier-2 threshold of the IBT is set high.
 - ► For most households (~93%), current price remains at tier 1.
 - 3. For households facing the flat rate, the current and expected future prices remain the <u>same and fixed</u> throughout the budget period.
- Focus: moderately high-use households
 - This *unconventional* IBT likely results in a constant current price and a deviation of the future price from the current price.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

 No IBT effect over time if households only respond to current price.

Main findings

- ► On average, the IBT leads to a mild and insignificant drop in household water consumption (-0.010).
- ► IBT water savings effect by baseline water consumption level
 - Low-use households: 0.006
 - ► High-use households: -0.047***
 - ► Moderately high-use households: -0.022**
- We detect strong evidence that households respond to dynamic incentives.
 - Moderately high-use households: significant water savings effect in the middle of the year

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Present-minded households do not respond to dynamic incentives.

Contributions

- 1. Consumers' response to nonlinear budget sets
- 2. Effect of price/non-price interventions on resource conservation
 - Price interventions
 - Nonlinear pricing (Olmstead, 2009; Szabó, 2015)
 - Non-price interventions
 - Providing information (Jessoe and Rapson, 2014; Allcott and Kessler, 2019; Bollinger and Hartmann, 2020)
 - Changing billing method (Jack and Smith, 2020)
 - Rationing (Mansur and Olmstead, 2012)
 - Interactions of price and non-price interventions (Jessoe et al., 2014; Sudarshan, 2017; Ito et al., 2018)
- 3. Effect of IBT on water consumption (Nataraj and Hanemann, 2011; Wichman, 2014)
 - First to consider the IBT in which the budget is renewed annually
 - Employed by 21 of the 36 major cities in China in 2019 with a collective population of 146 million

Data

Data sources

- A household survey at the end of 2016
 - A multi-stage and stratified sampling: three of five main urban districts → two sub-districts in each urban district → one IBT community and one non-IBT community from each sub-district → roughly 50 households in each community
 - Information collected: water bill identifiers, households' demographic and socio-economic characteristics, and time preferences
- Administrative water bills
 - Surveyed IBT households: 2013–early 2017 from Hangzhou Water
 - Surveyed non-IBT households: 2014–early 2017 from community administrative offices

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

- Final data set
 - Balanced panel data of 582 households
 - 282 IBT households + 300 non-IBT households
 - Household-year-bimonth level

Data

Location of sampled communities

▲ IBT

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ショー シック ()

Notes: This figure shows the map of the five main urban districts in Hangzhou and the locations of the 12 sampled communities. The map is produced using the data from the County-Level Assembly of the 2010 China Population Census. The locations of the 12 communities are shown with open circles for non-IBT groups and black triangles for IBT groups.

- <u>Baseline water consumption</u>: household annual water consumption in 2014
- ▶ <u>Median</u>: 121 m³
- Three subsamples
 - Low-use households: below median
 - High-use households: above median
 - Moderately high-use households: above median and below 216 m³

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Summary statistics

	All	By household annual water consumption in				
-		Low	High	Moderately high		
	(1)	(2)	(3)	(4)		
IDT	0.495	0.502	0.272	0.222		
IB1 group	0.485	0.595	0.373	0.323		
Household annual water consumption (m ³)	(0.500)	(0.492)	(0.464)	(0.409)		
in 2014	124.6	88.95	161.3	151.7		
m 2011	(48.99)	(26.90)	(38.34)	(22.22)		
in 2015	125.5	94.45	156.9	149.1		
m 2010	(47.72)	(32.02)	(39.82)	(27.42)		
in 2016	124.0	94.40	153.7	149.0		
11 2010	(47.96)	(34.20)	(40.90)	(33.57)		
Household daily water consumption (m3)	((0.120)	()	(****)		
in 2014	0.341	0.244	0.442	0.416		
	(0.134)	(0.074)	(0.105)	(0.061)		
in 2015	0.344	0.259	0.430	0.408		
	(0.131)	(0.088)	(0.109)	(0.075)		
in 2016	0.339	0.258	0.420	0.407		
	(0.131)	(0.093)	(0.112)	(0.092)		
Floor number	5.290	5.224	5.359	5.477		
	(3.778)	(3.526)	(4.025)	(4.168)		
Number of household members	3.132	2.892	3.380	3.346		
	(0.818)	(0.753)	(0.810)	(0.803)		
Number of children under age 18	0.711	0.685	0.739	0.727		
-	(0.524)	(0.534)	(0.513)	(0.526)		
Number of members aged above 55	0.357	0.264	0.453	0.427		
	(0.669)	(0.626)	(0.697)	(0.680)		
Highest years of schooling	14.21	13.81	14.62	14.61		
-	(3.326)	(3.766)	(2.749)	(2.838)		
Housing area per capita (m2)	22.68	26.40	18.86	18.86		
	(9.908)	(11.18)	(6.476)	(6.531)		
Observations	582	295	287	260		

Notes: This table reports the sample means and standard deviations (in parentheses) for all 852 households and by subgroup, "Low" refers to households with annual water consumption in 2014 below the median level in 2014. "High" refers to households with annual water consumption in 2014 above the median level in 2014. "Moderntely high" refers to households with annual water consumption in 2014 above the median level and below the tier-2 threshold of the B7, 216 m².

Trends in household daily water consumption over time Bimonthly

Model

The average effect of IBT on water consumption

- Common trends assumption: in the absence of the pricing reform, the water consumption of the IBT and non-IBT households should follow common trends.
- Empirical model

 $Y_{iyb} = \frac{\beta}{B}IBThh_i \times Post_{yb} + \delta_i + \gamma_{yb} + IBThh_i \times \theta_b + \rho_{yb}X_i + \epsilon_{iyb}$

• Y_{iyb} : daily water consumption of household *i* in year *y* bimonth *b*

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

- ► *IBThh_i*: 1 for an IBT household, and 0 otherwise
- Postyb: 1 from January 2015 onward, and 0 otherwise
- δ_i: household FE
- γ_{yb} : year-bimonth FE
- $IBThh_i \times \theta_b$: different seasonal patterns between IBT and non-IBT households
- ρ_{yb}X_i: different trends across households with different characteristics

Main results

The average effect of IBT on water consumption

	Dep.var.: Household daily water consumption (m^3)							
		All		By household annual water consumption in 2014				
				Low	High	Moderately high		
	(1)	(2)	(3)	(4)	(5)	(6)		
IBThh×Post	-0.009	-0.009	-0.010	0.006	-0.047***	-0.022**		
	(0.007)	(0.007)	(0.007)	(0.008)	(0.013)	(0.010)		
Observations	10,341	10,341	10,341	5,179	5,162	4,676		
R ²	0.768	0.777	0.782	0.672	0.669	0.592		
Num of clusters (household)	582	582	582	295	287	260		
Num of clusters (community-bimonth)	72	72	72	72	72	72		
Ÿ _{1,2014}	0.318	0.318	0.318	0.213	0.486	0.425		
Υ _{0,2014}	0.366	0.366	0.366	0.294	0.415	0.410		
Household FE	Y	Y	Y	Y	Y	Y		
Year-bimonth FE	Y	Y	Y	Y	Y	Y		
IBThh×bimonth dummies	Ν	Y	Y	Y	Y	Y		
Household controls × year-bimonth dummies	Ν	Ν	Y	Y	Y	Y		

Notes: *, **, and *** indicate significance at 10%, 5%, and 1%, respectively. Household controls that are interacted with year-bimonth dummies include the number of household members, number of children under age 18, highest years of schooling among members, and housing area per capita (all in the year of 2014). The standard errors in parentheses are clustered at two levels: household and community-bimonth. $\tilde{Y}_{1,2014}$ and $\tilde{Y}_{0,2014}$ denote the sample mean of household daily water consumption in 2014 for IBT and non-IBT households, respectively.

Interpretation

The average effect of IBT on water consumption

- Daily water savings of 0.047 m^3 for high-use households
 - $\sim 11\%$ of average daily consumption
 - Consistent with existing studies (Nataraj and Hanemann, 2011; El-Khattabi et al., 2021)
- Annual impacts
 - Household
 - ▶ Water savings of 17.2 *m*³
 - Hangzhou city (extrapolated)
 - ▶ Water savings of 8.5 million m³
 - Monetary savings of 24.6 million yuan (~US\$ 3.7 million)
 - Hangzhou water (extrapolated)
 - ► Total revenue increase of 121.6 million yuan (~US\$ 19.8 million)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Model

Testing household response to dynamic incentives

Empirical model

$$Y_{iyb} = \left(\sum_{\substack{j=2015, \\ 2016}} \sum_{\substack{1 \le d \le 11, \\ odd}} (IBThh_i \times \mu_{jd})\beta_{jd} \right) + \delta_i + \gamma_{yb} + IBThh_i \times \theta_b + \rho_{yb}X_i + \epsilon_{iyb}$$

- ► *IBThh_i* × μ_{jd} : interactions of IBT indicator and post-reform year-bimonth dummies
- β_{jd} captures the IBT effect in the corresponding year-bimonth post reform.

Main results

The effect of the IBT on household daily water consumption across year-bimonth periods

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三国士 のへの

Interpretation

Testing household response to dynamic incentives

- Low-use households
 - Little effect before September in both 2015 and 2016
 - \uparrow from September onward
 - Possibly a response to the low chance of entering tier 2 of the IBT, consistent with Brent and Ward (2019)
- High-use households
 - \downarrow starting in March in both years
 - Statistically significant \downarrow in spring and summer in both years
- Moderately high-use households
 - Non-IBT households: current and future price same and fixed
 - IBT households: current price at tier 1; <u>future price</u> varies over time.
 - Statistically significant ↓ in May–June 2015 and in May–June and July–August in 2016
 - Strong evidence of household incorporating the possibility of higher future prices into their water consumption decisions

Discussion

- Heterogeneity analysis
 - Time preferences
 - Other: by household socioeconomic status, household demographic structure, and housing condition
- Validity of the DID strategy
- Robustness checks
 - Alternative sample restrictions
 - Alternative thresholds for defining high-use households
 - Alternative specifications
 - Data set constructed at the monthly level
 - Measurement error in the meter reading dates for non-IBT households
- Short- and long-term effects of IBT
- ► IBT effect on the gap between high- and low-use households ●

▲□▶▲□▶▲□▶▲□▶ ■□ のQ@

Heterogeneity analysis Time preferences

	Dep.var.: Hous	Dep.var.: Household daily water consumption (m ³					
	Low	High	Moderately high				
	(1)	(2)	(3)				
IBThh×Post	0.008	-0.063***	-0.038***				
	(0.009)	(0.015)	(0.014)				
IBThh×Post×Present bias	-0.018	0.084***	0.053***				
	(0.017)	(0.021)	(0.016)				
IBThh×Post×Future bias	-0.004	0.005	0.027				
	(0.013)	(0.027)	(0.020)				
Observations	5,179	5,162	4,676				
R ²	0.672	0.674	0.596				
Household FE	Y	Y	Y				
Year-bimonth FE	Y	Y	Y				
IBThh×bimonth dummies	Y	Y	Y				
Household controls \times year-bimonth dummies	Y	Y	Y				

Heterogeneity analysis

Household socioeconomic status

	Dep.var.: Household daily water consumption (
	Low	High	Moderately high			
	(1)	(2)	(3)			
IBThh×Post	-0.001	-0.158***	-0.083			
	(0.035)	(0.059)	(0.051)			
IBThh×Post× Highest years of schooling	0.001	0.007**	0.004			
	(0.002)	(0.004)	(0.003)			
Observations	5,179	5,162	4,676			
R ²	0.672	0.670	0.593			
Household FE	Y	Y	Y			
Year-bimonth FE	Ŷ	Ŷ	Ŷ			
IBThhybimonth dummies	Y	Y	Ŷ			
Household controls \times year-bimonth dummies	Y	Ŷ	Ŷ			

Heterogeneity analysis

Household demographic structure

	Dep.var.: Household daily water consumption					
	Low	High	Moderately high			
	(1)	(2)	(3)			
IBThh×Post	-0.027	-0.184***	-0.129***			
	(0.034)	(0.048)	(0.038)			
IBThh×Post×Number of household members	0.011	0.039***	0.031***			
	(0.012)	(0.012)	(0.011)			
Observations	5,179	5,162	4,676			
R ²	0.672	0.672	0.595			
Household FE	Y	Y	Y			
Year-bimonth FE	Y	Y	Y			
IBThh×bimonth dummies	Y	Y	Y			
Household controls × year-bimonth dummies	Ŷ	Ŷ	Y			

	Dep.var.: Household daily water consumption (m^3)					
	Low	High	Moderately high			
	(1)	(2)	(3)			
IBThh×Post	-0.006	-0.019	0.039			
	(0.016)	(0.033)	(0.029)			
IBThh×Post×Housing area per capita/10	0.005	-0.014	-0.031**			
	(0.006)	(0.014)	(0.012)			
Observations	5,179	5,162	4,676			
R ²	0.672	0.669	0.594			
Household FE	Y	Y	Y			
Year-bimonth FE	Y	Y	Y			
IBThh×bimonth dummies	Y	Y	Y			
Household controls × year-bimonth dummies	Y	Y	Y			

Validity test 👁

Trends of regression residuals in household daily water consumption over time (bimonthly)

Short- and long-term effects of IBT 👁

	Dep.var.: Household daily water consumption (m^3)						
	Low	High	Moderately				
			high				
	(1)	(2)	(3)				
IBThh×Year2015	0.004	-0.028**	-0.015				
	(0.007)	(0.012)	(0.010)				
IBThh×Year2016	0.008	-0.067***	-0.029**				
	(0.010)	(0.017)	(0.013)				
Observations	5,179	5,162	4,676				
R ²	0.672	0.672	0.593				
Num of clusters (household)	295	287	260				
Num of clusters (community-bimonth)	72	72	72				
Ÿ _{1,2014}	0.213	0.486	0.425				
$\bar{Y}_{0,2014}$	0.294	0.415	0.410				
<i>p</i> -value	0.579	0.006	0.237				
Household FE	Y	Y	Y				
Year-bimonth FE	Y	Y	Y				
IBThh×bimonth dummies	Y	Y	Y				
Household controls × year-bimonth dummies	Y	Y	Y				

IBT effect on the gap between high- and low-use households

- Sample: IBT households
- Empirical model

 $Y_{iyb} = \phi Highuser_i \times Post + \sigma_i + v_{yb} + Highuser_i \times \tau_b + \mu_{yb}X_i + \xi_{iyb}$

- *Highuser*_{*i*}: one for households with baseline water consumption above the median
- σ_i: household FE
- v_{yb} : year-bimonth FE
- *Highuser*_i $\times \tau_b$: different seasonal patterns of high- and low-use households

 µyb X_i: different trends across households with different characteristics

	Dep. var.: Household daily water consumption				
	IBT households	IBT households			
	2014-2016	2013-2016			
	(1)	(2)			
Panel A: All IBT households					
High-use hh×Post	-0.078***	-0.073***			
6	(0.014)	(0.015)			
Observations	4,941	6,307			
R ²	0.763	0.706			
\overline{Y} of high-use households in 2014	0.486	0.486			
$\overline{\mathbf{Y}}$ of low-use households in 2014	0.213	0.213			
Panel B: IBT households with extreme high-use househo	olds excluded				
High-use hh×Post	-0.054***	-0.054***			
-	(0.012)	(0.014)			
Observations	4,527	5,778			
R ²	0.701	0.632			
\overline{Y} of high-use households in 2014	0.425	0.425			
$\overline{\mathbf{Y}}$ of low-use households in 2014	0.213	0.213			
Household FE	Y	Y			
Year-bimonth FE	Y	Y			
IBThh×bimonth dummies, high-use×bimonth dummies	Y	Y			
Household controls × year-bimonth dummies	Y	Y			

IBT effect on the gap between high- and low-use households

- The IBT has substantial water savings effect for high-use households but does not affect low-use households' water consumption.
- Households incorporate potential future price increases under the IBT into their water consumption decisions.
- Policy implications
 - The targets of improved water conservation and increased revenue are achieved at a relatively low cost by employing <u>a pure</u> price instrument.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Thank you very much!

Website: liliecon.weebly.com Email: liliecon10@gmail.com

< □ ▶ < @ ▶ < E ▶ < E ▶ 差目= のへぐ

Reference I

- Allcott, H. and Kessler, J. B. (2019). The Welfare Effects of Nudges: A Case Study of Energy Use Social Comparisons. <u>American Economic Journal: Applied Economics</u>, 11(1):236–276.
- Aron-Dine, A., Einav, L., Finkelstein, A., and Cullen, M. (2015). Moral Hazard in Health Insurance: Do Dynamic Incentives Matter? <u>Review of Economics and</u> Statistics, 97(4):725–741.
- Bollinger, B. K. and Hartmann, W. R. (2020). Information vs. Automation and Implications for Dynamic Pricing. Management Science, 66(1):290–314.
- Borenstein, S. (2009). To What Electricity Price do Consumers Respond? Residential Demand Elasticity Under Increasing-Block Pricing. <u>Preliminary Draft</u> <u>April</u>, pages 1–37.
- Brent, D. A. and Ward, M. B. (2019). Price Perceptions in Water Demand. <u>Journal of</u> Environmental Economics and Management, 98:1–21.
- Dalton, C. M., Gowrisankaran, G., and Town, R. J. (2020). Salience, Myopia, and Complex Dynamic Incentives: Evidence From Medicare Part D. <u>Review of</u> Economic Studies, 87(2):822–869.
- de Bartolome, C. A. (1995). Which Tax Rate do People Use: Average or Marginal? Journal of Public Economics, 56(1):79–96.

Reference II

- Einav, L., Finkelstein, A., and Schrimpf, P. (2015). The response of drug expenditure to nonlinear contract design: Evidence from Meicare Part D. <u>Quarterly Journal of</u> Economics, 130(2):841–899.
- El-Khattabi, A. R., Eskaf, S., Isnard, J. P., Lin, L., McManus, B., and Yates, A. J. (2021). Heterogeneous responses to price: Evidence from residential water consumers. Journal of Environmental Economics and Management, 107:102430.
- Feldman, N. E. and Katuščák, P. (2010). Effects of Predictable Tax Liability Variation on Household Labor Income. Working Paper, https://www.cerge-ei.cz/pdf/gdn/rrc/RRCIX_04_paper_01.pdf.
- Ito, K. (2014). Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing. <u>American Economic Review</u>, 104(2):537–563.
- Ito, K., Ida, T., and Tanaka, M. (2018). Moral Suasion and Economic Incentives: Field Experimental Evidence from Energy Demand. <u>American Economic Journal</u>: <u>Economic Policy</u>, 10(1):240–267.
- Jack, K. and Smith, G. (2020). Charging Ahead: Prepaid Metering, Electricity Use, and Utility Revenue. <u>American Economic Journal: Applied Economics</u>, 12(2):134–168.
- Jessoe, K. and Rapson, D. (2014). Knowledge is (Less) Power: Experimental Evidence From Residential Energy Use. <u>American Economic Review</u>, 104(4):1417–1438.

Reference III

- Jessoe, K., Rapson, D., and Smith, J. B. (2014). Towards Understanding the Role of Price in Residential Electricity Choices: Evidence From a Natural Experiment. Journal of Economic Behavior and Organization, 107:191–208.
- Liebman, J. B. and Zeckhauser, R. J. (2004). Schmeduling. Working Paper, http://www.econ.yale.edu/ shiller/behmacro/2004-11/schmedulingzeckhauser.pdf.
- Mansur, E. T. and Olmstead, S. M. (2012). The Value of Scarce Water: Measuring the Inefficiency of Municipal Regulations. <u>Journal of Urban Economics</u>, 71(3):332–346.
- Nataraj, S. and Hanemann, W. M. (2011). Does Marginal Price Matter? A Regression Discontinuity Approach to Estimating Water Demand. Journal of Environmental Economics and Management, 61(2):198–212.
- Olmstead, S. M. (2009). Reduced-form versus structural models of water demand under nonlinear prices. Journal of Business and Economic Statistics, 27(1):84–94.
- Saez, E. (1999). Do taxpayers bunch at kink points? National Bureau of Economic Research, Working Paper No. 7366.
- Sudarshan, A. (2017). Nudges in the Marketplace: The Response of Household Electricity Consumption to Information and Monetary Incentives. Journal of Economic Behavior and Organization, 134:320–335.

Reference IV

- Szabó, A. (2015). The Value of Free Water: Analyzing South Africa's Free Basic Water Policy. Econometrica, 83(5):1913–1961.
- Wichman, C. J. (2014). Perceived Price in Residential Water Demand: Evidence From a Natural Experiment. <u>Journal of Economic Behavior and Organization</u>, 107:308–323.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Samples of water bills for IBT households in Hangzhou

杭水热线: 87826789 水费鐵款通知单 分名词 少名词 少名词 户号、□臣.20 户名: 地址: 上期抄见:2020% 本期抄见:2020% 本期抄见:2020% 本期抄见:2020% 本期抄见:2020% 本期抄见:2020% 本期抄见:2020% 本期抄见:2020% 本期外前:2020% 本期抄见:2020% 本期次目:00 水丁酸:	抗水热线: 87826789 水 突強該: 通知 水 突流 通知 水 突流 通知 水 突流 通知 水 次 通路: > 26: · · 法: · · 法: · · · · · · · · · · · · · · · · · · · ·	Hangzhou Water Water Bill F XXX2 Household ID: Name of head: Address: Last period reading: This period reading: This period reading: Actual consumption this Water amount Tier 1: Tier 2: Tier 3: Total amount payable th Defaulting times: Due to_[reason to be pr on estimation. Balance in each tier by Q Tier 1: Meter reading date: [QR [QR code 1] code 2]	Hotline: 87826789 wyment Notice C Branch Dianeter: period: Cost Rate is period: Balance due: wided[this bill is based Current Billing Period: Tier 2: Please pay bill on time Defaulting will be Defaulting will be Defaulting millo Defaulting millo Defaulting millo Defaulting millo Default of millor Default of millor Default of millor Default of millor Default of millor Default of millor Millor
WIND TO A BACK A DIMAN	WITH THAT AND THAT	Hangzhou	Water Group

・ロト・日本・モート 日本 シック

Sample of water bill for non-IBT households in Hangzhou

and the second s		1			1幢20	0164		□□□	能耗分	分摊明组	田表	1	an I	1
序号	房号	面积	上期 度数	本期度数	⑦ 实收 度数	水损水费	 能 电梯 分摊 	耗分操 公用照 明水泵	合计	上月结余			实收金	新 新 时间
	1-101	90.29	240	260	20	59,00	27.09	212	04.01	0.00	•	1	1	
2	1-102	75.55	374	377	3	8 85	22 67	6.90	34.21	0.03	-94.19	-91, 19	1	
3	1-103	88.55	656	669	13	38 35	26.67	7.02	38.31	-43.69	-82.00.	-82,00	1	
4	1-201	96.29	659	686	27	70.65	20.01	1.97	72.88	-292.42	₹365.30	-365.30		
5	1-202	75.55	344	373	29	85.55	21.09	8.13	114.86	-536.13	-651.00	-6\$1.00		/
6	1-203	88.55	606	658	52	153 40	22.07	0.80	115.01	-135.14	-250.15	-250, 15		
7	1-301	90.29	400	415	15	44.25	20.01	0.91	187.93	-188.96	-376.89	₹376.89		
8	1-302	75.55	112	120	8	23.60	22.67	6.20	53.06	-101.20	-117 24	-130, 67		
0	1-303	88.55	542	572	30	88.59	26.57	7 97	123 03	-084 A6	407.40	402 403	120	
10	I-401	90.29	210	228	18	53.10	27.09	8.13	88.31	322, 18	233.86	233, 86	40	2.*
11	1-402	75.55	428	461	33	97.35	22.67	6.80	126.81	-143, 88	-270, 69	-270.69	-	
12	1-403	88.55	528	542	14	41.30	26.57	7.97	75.83	0.01	-75.82	-75,82		
13	1-501	90.29	- 366	406	40	118.00	27.09	8.13	153.21	-163.12	-316.34	-316.34		
14	1-502	75.55	413	422	9	26.55	22.67	6.80	56.01	-70.26	-126.27	-126.27		
15	1-503	88.55	530	552	22	64.90	26.57	7.97	99.43	0.01	-99.42	-99, 42		
16	1-601	90.29	329	343	14	41.30	27.09	8.13	76.51	-95.29	-171.81	-171.81		
17	1-602	75.55	76	86	10	29.50	22.67	6.80	58.96	-58.39	-117.35	-117.35		0.10
-18	1-603	88.55	432	450.85	18	53.10	26.57	7.97	87.63	-447.07	534.70	-534.70	183.7.	11.1
19	1-701	90.29	59	60	1	2.95	27.09	8.13	38.16	-85.15	-123.32	-123.32	1	1
20	1.702	25.55	267	290	23	67.85	22.67	6.80	97.31	2.63	-94.68	-94.68	-1 200-	1 12.81
-	1-703	88.55	223	244	21	61.95	26.57	7.97	96.48	-97.34	-193.82	-193.8	~1.+99	Pu l
	-+	90.29	225	267	42	123.90	27.09	8 13	159.11	0:00	1-159.15	1 100	101	fuel
1	1	V.	367	367	0	0.00	22.67	6.80	58 1	3 -0.02	-1-100.1	15 1 -00	1 31.6	1
- A & A						00 00	1 26 57	1 1.90	1 00.1	0.02	· /uo.			/

	Details of water and electricity sharing in Block 1 in 2016													
				Water	r bill	water and	Share	d energy bill		Balanaa	Palanaa			
No	Room number	Area	Last reading	This readin g	Billed consu mptio n	Water bill	Eleva tor	Lighting and water pump	Final bill	last month	this month	Total balance	Paid amount	Payment date

・ロ・・ 第一・ 小田・ 小田・ 小田・ うろう